La nueva tecnología de monitoreo de peligros utiliza señales de GPS para ir a la caza de olas en el Cinturón de Fuego del Pacífico. El objetivo a largo plazo de GUARDIAN es aumentar los sistemas de alerta temprana.

Provocados por terremotos, volcanes submarinos y otras fuerzas que sacuden la Tierra, los tsunamis pueden devastar las comunidades costeras. Y cuando se trata de brindar una advertencia anticipada, cada segundo cuenta. Los científicos del Laboratorio de Propulsión a Chorro de la NASA están probando un enfoque novedoso para detectar, desde los confines de la atmósfera, las olas más letales del océano.

Llamado GUARDIAN (GNSS Upper Atmospheric Real-time Disaster Information and Alert Network), el sistema de monitoreo experimental aprovecha los datos de grupos de GPS y otros satélites de orientación que orbitan nuestro planeta. En conjunto, estos grupos se conocen como sistemas satelitales de navegación global o GNSS. Sus señales de radio viajan a cientos de estaciones terrestres científicas en todo el mundo, y la red Global Differential GPS (GDGPS) de JPL procesa los datos, lo que mejora la precisión posicional en tiempo real hasta unas pocas pulgadas (aproximadamente 10 centímetros).

El nuevo sistema tamiza las señales en busca de pistas de que ha surgido un tsunami en algún lugar de la Tierra. ¿Como funciona? Durante un tsunami, muchas millas cuadradas de la superficie del océano pueden subir y bajar casi al unísono, desplazando una cantidad significativa de aire por encima. El aire desplazado se propaga en todas direcciones en forma de ondas sonoras y de gravedad de baja frecuencia. En varios minutos, estas vibraciones alcanzan la capa superior de la atmósfera: la ionosfera cargada eléctricamente y cocinada por el Sol. El consiguiente choque de ondas de presión con partículas cargadas puede distorsionar muy levemente las señales de los satélites de navegación cercanos.

Esta animación muestra cómo las ondas de energía del terremoto y tsunami de Tohoku-Oki del 11 de marzo de 2011 perforaron la ionosfera de la Tierra en las cercanías de Japón, perturbando la densidad de los electrones. Estas perturbaciones fueron monitoreadas rastreando señales de GPS entre satélites y receptores terrestres.
Créditos: NASA/JPL-Caltech
Si bien las herramientas de navegación generalmente buscan corregir tales perturbaciones ionosféricas, los científicos pueden usarlas como una campana de alarma que salva vidas, señaló Léo Martire, científico del JPL que desarrolla GUARDIAN. “En lugar de corregir esto como un error, lo usamos como datos para encontrar peligros naturales”, dijo Martire.

La herramienta de monitoreo más rápida de su tipo

La tecnología aún está madurando, dijo Martire, quien copreside un grupo de trabajo dentro del Comité Internacional de GNSS de las Naciones Unidas que está explorando el uso de sistemas de navegación por satélite para mejorar las estrategias de alerta temprana. Actualmente, los resultados casi en tiempo real de GUARDIAN deben ser interpretados por expertos capacitados para identificar señales de tsunamis. Pero ya es una de las herramientas de monitoreo más rápidas de su tipo: en 10 minutos puede producir una especie de instantánea del estruendo de un tsunami que llega a la ionosfera. Y potencialmente podría proporcionar hasta una hora de advertencia, dependiendo de la distancia del origen del tsunami desde la costa.

“Prevemos que GUARDIAN algún día complementará los instrumentos terrestres y marinos existentes, como sismómetros, boyas y mareógrafos, que son muy efectivos pero carecen de cobertura sistemática del océano abierto”, dice Siddharth Krishnamoorthy, también parte del equipo de desarrollo del JPL. . Los científicos afiliados al programa de Desastres de la NASA actualmente usan instrumentos terrestres en estaciones GNSS para una detección más rápida de tsunamis.

Una señal de evacuación apunta a un terreno más seguro en Phuket, Tailandia
Una señal de evacuación apunta a un terreno más seguro en Phuket, Tailandia, donde un tsunami catastrófico siguió a un terremoto submarino el 26 de diciembre de 2004. Uno de los desastres naturales más mortíferos de la historia moderna, al menos 225,000 personas en varios países murieron.
Créditos: NASA/JPL-Caltech
“Cuando hay un gran terremoto cerca del océano, queremos saber rápidamente la magnitud y las características del terremoto para comprender la probabilidad de que se genere un tsunami, y queremos saber si realmente se generó un tsunami”, dijo Gerald Bawden. , el científico del programa para la superficie y el interior de la Tierra en la sede de la NASA en Washington. “Hoy hay dos formas de saber si se generó un tsunami antes de tocar tierra: las boyas DART de la NOAA y las observaciones de la ionosfera GNSS. Hay un número limitado de boyas y son muy caras, por lo que sistemas como GUARDIAN tienen el potencial de complementar los sistemas de alerta actuales”.

En este momento, el equipo de GUARDIAN está enfocado en el Anillo de Fuego geológicamente activo del Océano Pacífico. Alrededor del 78% de los más de 750 tsunamis confirmados entre 1900 y 2015 ocurrieron en esta región, según una base de datos histórica principal

nasa.gov

NASA Researchers Detect Tsunamis by Their Rumble in the Atmosphere

Waves churn in Onomea Bay, Hawaii

Waves churn in Onomea Bay, Hawaii, where the sea rose by more than 30 feet (9 meters) during the deadly tsunami of April 1, 1946. Emerging technology could help detect these natural hazards via acoustic and gravity ripples they hurl towards space.

Credits: M. Younger

New hazard-monitoring technology uses GPS signals to go wave-hunting in the Pacific Ring of Fire. GUARDIAN’s long-term objective is to augment early warning systems.

Triggered by earthquakes, undersea volcanoes, and other Earth-shaking forces, tsunamis can devastate coastal communities. And when it comes to providing advance warning, every second counts. Scientists at NASA’s Jet Propulsion Laboratory are testing a novel approach to detect – from the far reaches of the atmosphere – the ocean’s deadliest waves.

Called GUARDIAN (GNSS Upper Atmospheric Real-time Disaster Information and Alert Network), the experimental monitoring system taps into data from clusters of GPS and other wayfinding satellites orbiting our planet. Collectively, these clusters are known as global navigational satellite systems, or GNSS. Their radio signals travel to hundreds of scientific ground stations around the world, and that data is crunched by JPL’s Global Differential GPS (GDGPS) network, which improves real-time positional accuracy down to a few inches (roughly 10 centimeters).

The new system sifts the signals for clues that a tsunami has arisen somewhere on Earth. How does it work? During a tsunami, many square miles of the ocean surface can rise and fall nearly in unison, displacing a significant amount of air above it. The displaced air ripples out in all directions in the form of low-frequency sound and gravity waves. Within several minutes, these vibrations reach the topmost layer of atmosphere: the Sun-cooked, electrically charged ionosphere. The ensuing clash of pressure waves with charged particles can distort the signals from nearby navigational satellites ever so slightly.

https://youtube.com/watch?v=VyFgYNGytSc%3Frel%3D0

This animation shows how waves of energy from the Tohoku-Oki earthquake and tsunami of March 11, 2011, pierced Earth’s ionosphere in the vicinity of Japan, disturbing the density of electrons. These disturbances were monitored by tracking GPS signals between satellites and ground receivers.

Credits: NASA/JPL-Caltech

While navigation tools usually seek to correct for such ionospheric disturbances, scientists can use them as a lifesaving alarm bell, noted Léo Martire, a JPL scientist developing GUARDIAN. “Instead of correcting for this as an error, we use it as data to find natural hazards,” Martire said.

Fastest Monitoring Tool of Its Kind

The technology is still maturing, said Martire, who co-chairs a task force within the United Nations’ International Committee on GNSS that is exploring the use of navigational satellite systems to enhance early warning strategies. Currently, GUARDIAN’s near-real-time output must be interpreted by experts trained to identify signs of tsunamis. But already it is one of the fastest monitoring tools of its kind: Within 10 minutes it can produce a kind of snapshot of a tsunami’s rumble reaching the ionosphere. And it could potentially provide as much as an hour of warning, depending on the distance of the tsunami origin from shore.

“We envision GUARDIAN one day complementing existing ground- and ocean-based instruments such as seismometers, buoys, and tide gauges, which are highly effective but lack systematic coverage of the open ocean,” says Siddharth Krishnamoorthyalso part of the JPL development team. Scientists affiliated with NASA’s Disasters program currently use ground-based instruments at GNSS stations for faster tsunami detection.

An evacuation sign points to safer ground in Phuket, Thailand

An evacuation sign points to safer ground in Phuket, Thailand, where a catastrophic tsunami followed an undersea earthquake on Dec. 26, 2004. One of the deadliest natural disasters in modern history, at least 225,000 people across multiple countries were killed.

Credits: NASA/JPL-Caltech

“When there is a large earthquake near the ocean, we want to quickly know the magnitude and characteristics of the earthquake to understand the likelihood that a tsunami will be generated, and we want to know if a tsunami was indeed generated,” said Gerald Bawden, the program scientist for Earth’s Surface and Interior at NASA Headquarters in Washington. “Today there are two ways to know if a tsunami was generated before it makes landfall – NOAA’s DART buoys and GNSS-ionosphere observations. There is a limited number of buoys and they are very expensive, so systems like GUARDIAN have the potential to complement current warning systems.”

Right now, the GUARDIAN team is focused on the Pacific Ocean’s geologically active Ring of Fire. About 78% of the more than 750 confirmed tsunamis between 1900 and 2015 occurred in this region, according to a historical database maintained by the National Oceanic and Atmospheric Administration (NOAA). GUARDIAN currently monitors a little over half of the region of interest in the Pacific.

The GUARDIAN team is developing a website to allow experts to explore the state of the ionosphere in near real time by studying individual satellite station links on the GNSS network. Users can access the data from about 90 stations around the Pacific Ring of Fire and discover signals of interest within minutes of an event occurring. The team aims to expand coverage and refine the system to a point where it could automatically flag tsunamis and other hazards, including volcanic eruptions and earthquakes.

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
[email protected] / [email protected]

Written by Sally Younger